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We call a martingale M = {Mn}n∈N0 square-integrable if EM2
n < ∞ holds for all n. Then M2 is a

submartingale, with DOOB decomposition

M2 − ⟨M⟩ = martingale

for the predictable, increasing sequence,

⟨M⟩0 = 0; ⟨M⟩n =
n∑

k=1

[
E(M2

k |Fk−1) − M2
k−1

]
=

n∑
k=1

E
[
(Mk − Mk−1)2|Fk−1

]
, n ∈ N0.

Remark 1 It is instructive to note that M2 − A is also a martingale, where

A0 = 0; Am =
n∑

k−1
(Mk − Mk−1)2 =: [M ]n, n ∈ N0

is increasing, adapted, though NOT predictable.

This shows that the requirement of predictability in the DOOB decomposition, is essential.

We make now the elementary observations

E[(Mk − Mj)2Fj ] = E(M2
k |Fj) − M2

j = E[⟨M⟩k|Fj ] − ⟨M⟩j

E[(Mk − Mj) · ξ] = E[ξ · (E(Mk|Fj) − Mj)] = 0

for k > j, ξ ∈ L2(Fj). In particular, the increments of {Mn}n∈N0 over non-overlapping intervals are

orthogonal, and we have the Pythagorean relationship

E[(Mn+j − Mn)2] = E[M2
n+j − M2

n] = E[⟨M⟩n+j − ⟨M⟩n] =
n+j∑

k=n+1
E(Mk − Mk−1)2, n ∈ N0.

Similarly, if M = {Mn}n∈N0 , N = {Nn}n∈N0 are square-integrable martingale, the difference

MN − ⟨M, N ⟩
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is a martingale, where

⟨M, N ⟩ :=
n∑

k−1
E [(M + k − Mk−1)(Nk − Nk−1)|Fk−1] , n ∈ N0

and ⟨M, N ⟩0 := 0, the ”angle-bracket” of M, N , is predictable, and satisfies

E [(Mn+j − Mn)(Nn+j − Nn)|Fn] = E(Mn+jNn+j |Fn) − MnNn = E(⟨M, N ⟩n+j |Fn) − ⟨M, N ⟩n.

Definition 9.1 We say that M, N are orthogonal, if ⟨M, N ⟩ ≡ 0; equivalently, if the product MN is a

martingale.

Proposition 9.2 For a square-integrable martingale M = {Mn}n∈N0 we have

sup
n∈N0

E(M2
n) < ∞ ⇔

∑
k∈N

E(Mk − Mk−1)2 < ∞ ⇔ E(⟨M⟩∞) < ∞.

And in this case, for some M∞ ∈ L2, we have

lim
n

Mn = M∞ both a.e. and in L2.

Proof: The first claim is clear from the Pythagorean relationship, which gives

sup
n∈N0

E(M2
n) − E(M2

0 ) =
∑
k∈N

E(Mk − Mk−1)2 = E(⟨M⟩∞).

If these quantities are finite, the sequence M is bounded in L2 (thus also uniformly integrable), so the DOOB

Martingale Convergence Theorem shows that

lim
n→∞

Mn = M∞ exists both a.e. and in L1.

But then from FATOU and the Pythagorean relationship

E(M∞ − Mn)2 = E[ lim
j→∞

(Mn+j − Mn)2] ≤ lim inf
j→∞

E(Mn+j − Mn)2

= lim
j→∞

n+j∑
k=n+1

E(Mk − Mk−1)2 =
∑

k≥n+1
E(Mk − Mk−1)2

= E(⟨M⟩∞ − ⟨M⟩n) < ∞.
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It develops that E(M2
∞) < ∞, Mn

L2

−−→ M∞.

It turns out that the convergence of a square-integrable martingale M, is tied to the finiteness of the limit

⟨M⟩∞ = lim
t→∞

⟨M⟩n

of its bracket.

Theorem 9.3 (Convergence of Square-Integarble Martingales) For a square-integrable martingale

M, the limit

lim
n→∞

Mn exists in R a.e. on {⟨M⟩∞ < ∞}.

And if the increments of this martingale are bounded by some real constant, for (n, ω) ∈ N × Ω, then

{ lim
n→∞

Mn exists in R} = {⟨M⟩∞ < ∞}, mod. P.

Theorem 9.4 (SLLN for Square-Integarble Martingales) For a square-integrable martingale M =

{Mn}n∈N0 , we have the SLLN

lim
n→∞

Mn

1 + ⟨M⟩n
= 0, a.e. on {⟨M⟩∞ = ∞}.

Let us go back to some (very) classical Probability Theory.

Example: Series of Independent Random Variables Suppose ξ1, ξ2... are independent, with σ2
k = E(ξ2

k) < ∞

and E(ξk) = 0, ∀k ∈ N. Then

M0 = 0; Mn =
n∑

j=1
ξj (n ∈ N)

is a square-integrable martingale with ⟨M⟩n

n∑
j=1

σ2
j ; it is also bounded in L2, if

∑
j∈N

σ2
j < ∞.

From the Proposition and Theorem, we deduce the

KOLMOGOROV Criterion

∑
k∈N

σ2
k < ∞ =⇒

∑
k∈N

ξk(ω) converges in R for P-a.e. ω ∈ Ω,

as well as ∑
k∈N

σ2
k < ∞ ⇐=

∑
k∈N

ξk(ω) converges in R for P-a.e. ω ∈ Ω,
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when the ξn(ω) are uniformly bounded, ∀(n, ω) ∈ N × Ω.

In particular, if a1, a2, ... are bounded real number, and ξ1, ξ2, ... independent symmetric BERNOULLIs P(ξj =

±1) = 1
2 , we have ∑

k∈N
a2

k < ∞ ⇔
∑
k∈N

akξk(ω) converges in R for P-a.e. ω ∈ Ω.

A bit more generally, we have the following celebrated result.

Theorem 9.5 (KOLMOGOROV Three-Series Theorem) For independent ξ1, ξ2, ... the series
∑

n∈N0

ξn con-

verges in R a.e. if, and only if,

(i)
∑

n∈N0

P(|ξn|> K) < ∞;

(ii)
∑

n∈N0

E(ξn1|ξn|≤K) < ∞ converges in R;

(iii)
∑

n∈N0

Var(ξn1|ξn|≤K) < ∞

hold for some (therefore also for all) K ∈ (0, ∞).


